Home
Math symbols
Jokes
Forum
About us
Links
Contact us
Site map
Search The Site
   
   Program of Lessons
 
 Study Guide
 Topics of problems
 Tests & exams
www.bymath.com Study Guide - Arithmetic Study Guide - Algebra Study Guide - Geometry Study Guide - Trigonometry Study Guide - Functions & Graphs Study Guide - Principles of AnalysisStudy Guide - Sets Study Guide - Probability Study Guide - Analytic Geometry Select topic of problems Select test & exam

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers


The note. In examples no. no. 1.004 - 1.006, 1.008 - 1.010, 1.024 where decimal periodic fractions are, it is
possible to use for their transformation in simple fractions the following method. We’ll admit the fraction 0. (263)
is given. Let's designate it through x = 0.(263), and then multiply both parts of this equality by 1000 (more precisely,
by 10n where n – a number of digits in the decimal fraction period), we’ll receive: 1000 x = 263.(263). From here
1000 x - 263 = x, or 999 x = 263, and finally, x = 263/999. Thus, 0.(263) = 263/999. The alternative method
of transformation of decimal periodic fraction in a simple fraction is given in solution of the example 1.004.


                              Help    Solution   Answers

                              Help  Solution Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers

                              Help    Solution   Answers


| Home | About us | Links | Contact us |

Copyright © 2002-2007 Dr. Yury Berengard. All rights reserved.