Home
Math symbols
Jokes
Forum
About us
Links
Contact us
Site map
Search The Site
   
   Program of Lessons
 
 Study Guide
 Topics of problems
 Tests & exams
www.bymath.com Study Guide - Arithmetic Study Guide - Algebra Study Guide - Geometry Study Guide - Trigonometry Study Guide - Functions & Graphs Study Guide - Principles of Analysis Study Guide - Sets Study Guide - Probability Study Guide - Analytic Geometry Select topic of problems Select test & exam Rules Price-list Registration

Mathematical induction


 

Assume it’s necessary to prove a statement ( formula, property etc.), depending on a natural number  n . If :

    1)  this statement is valid for some natural number  n0 ,

    2)  from validity of this statement at  n = k  its validity follows at  n = k + 1  for any  kn0 ,

then this statement is valid for any natural number  n n0 .

 

E x a m p l e 1.  Prove that  1 + 3 + 5 + ...+ ( 2n – 1 ) = n 2 .

 

                        To provethis equalityweusethe mathematical induction method.  

                        It is obvious that at  n = 1  this equality is valid. Assume that it is

                        valid at some  k , i.e. the following equality takes place:

 

                                             1 + 3 + 5 + ... + ( 2k – 1 ) = k 2 .

 

                        Prove that then it takes place also at  k + 1. Consider the correspon- 

                        ding sum at  n = k + 1 :

 

                        1 + 3 + 5 + ... + ( 2k – 1 ) + ( 2k + 1 ) = k 2 + ( 2k + 1 ) = ( k +1) 2 .

 

                        Thus, from the condition that this equality is valid at  k  it follows,

                        that it is valid at  k+ 1 , hence, it is valid at any natural number  n ,

                        which was to be proved.



E x a m p l e 2.  See the solution of the problem 5.047.

E x a m p l e 3.  See the solution of the problem 5.048.

Back


| Home | About us | Links | Contact us |

Copyright © 2002-2012 Dr. Yury Berengard. All rights reserved.